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ABSTRACT 
 
The Kalman filter is a set of equations, applied 
recursively, that can be used in surveying 
applications to obtain position, velocity and 
acceleration of a moving object from traditional 
surveying measurements.  The aim of this paper is 
to introduce the surveyor to the Kalman filter by 
examination of two simple applications, (i) 
Electromagnetic Distance Measurement (EDM) 
and (ii) the position and velocity of a ship in a 
navigation channel. 
 
 
INTRODUCTION 
 
A Kalman filter is a set of equations that are 
applied recursively to estimate the state of a 
system from a sequence of noisy measurements at 
times etc.  The "state" of the system is 
its value or values at times etc and a 
"system" may have a single value or multiple 
values.  Say, for instance, the system is a ship 
steaming on a particular heading in a shipping 
channel and the state of the system (the ship) is its 
east and north coordinates (

1 2 3, , ,t t t …

1 2 3, , ,t t t …

),k kE N  and its 

velocity ( ),k kE N� � .  We say that this system (the 

ship) has a state vector1  

containing four elements and the subscript k 
indicates a value at time . 

, , ,
T

k k k k kE N E N⎡= ⎣x � � ⎤⎦

                                                     

kt

 
1 In this paper, vectors are taken to mean column-
vectors.  A row-vector containing one row and n 
columns, and shown as [ ]  is the 
transpose of the column vector containing n rows 
and one column.  To save space, column-vectors 
are often shown as [ ]  where the 

notation [ ]  indicates the transpose. 

1 2 na a a"

1 2

T
na a a"

T

A vector can also contain a single element. 

 
On the other hand, a system may be a process 
such as EDM by phase comparison of emitted and 
reflected light beams.  The state of this system is a 
single value, the distance ( )kD , determined at 
times etc, and this system (the EDM) 
has a state vector 

1 2 3, , ,t t t …
[k ]kD=x  containing a single 

element and the subscript k indicates a value at 
time . kt
 
"Noisy" measurements are measurements that 
contain small random errors assumed to be 
normally distributed, i.e., the aggregation of errors 
in size groupings would form the familiar 
symmetric bell-shaped histogram with positive 
and negative errors equally likely and small errors 
more frequent than large errors.  Surveyors 
usually talk of residuals (or corrections) rather 
than errors, where a residual is the same 
magnitude as an error but of opposite sign.   
 
A Kalman filter gives the best estimates (in a least 
squares sense) of the state of a dynamic system at 
a particular instant of time.  And a dynamic 
system can be one whose values are changing 
with time, due to the motion of the system and 
measurement errors, or one whose values are 
measured at various instants of time and appear to 
change due to measurement errors.  Dynamic 
systems do not have a single state (consisting of 
one or many values) that can be determined from 
a finite set of measurements but instead have a 
continuously changing state that has values 
sampled at different instants of time.  
 
This paper aims to provide some insight into the 
Kalman filter and its implementation by studying 
two examples (i) the determination of a theoretical 
distance by an EDM; a dynamic system with a 
state vector containing a single value, and (ii) the 
determination of the position and velocity of a 
ship in a navigation channel; a dynamic system 
having a state vector containing four parameters. 
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THE KALMAN FILTER 
 
The Kalman filter equations were published in 
1960 by Dr. R.E. Kalman in his famous paper 
describing a new approach to the solution of linear 
filtering and prediction (Kalman 1960).  Since that 
time, papers on the application of the technique 
have been filling numerous scientific journals and 
it is regarded as one of the most important 
algorithmic techniques ever devised.  It has been 
used in applications ranging from navigating the 
Ranger and Apollo spacecraft in their lunar 
missions to predicting short-term fluctuations in 
the stock market.  Sorenson (1970) shows 
Kalman's technique to be an extension of C.F. 
Gauss' original method of least squares developed 
in 1795 and provides an historical commentary on 
its practical solution of linear filtering problems 
studied by 20th century mathematicians.   
 
The derivation of the Kalman filter equations can 
be found in many textbooks related to signal 
processing that is the usual domain of Electrical 
Engineers, e.g., Brown and Hwang (1992).  These 
derivations often use terminology that is 
unfamiliar to surveyors, but two authors, 
Krakiwsky (1975) and Cross (1992) both with 
geodesy and surveying backgrounds, have 
derivations, explanations, terminology and 
examples that would be familiar to any surveyor.  
This paper uses terminology similar to Cross and 
Krakiwsky.  The Kalman filter equations and the 
associated measurement and dynamic models are 
given below with a brief explanation of the terms.  
It is hoped that the study of the two examples will 
help to make the Kalman filter a relatively easily 
understood process. 
 
The primary models (or measurement models) at 
times  and , and the secondary model (or 
dynamic model) linking the states at  and  
are given by the matrix equations 

1kt − kt

1kt − kt

11 1 1 1

1

primary 

primary 

dynamic

k

k

k k k k

k k k k

k k m

t

t
−− − − −

−

+ =
+ =

= +

v B x f
v B x f

x Tx v
 (1) 

where 
 x is the state vector 
 v is the vector of residuals associated with 

the measurements 
 B is a coefficient matrix 
 f is a vector of numeric terms derived from 

the measurements 
 T is the transition matrix 

  is a vector of residuals associated with the 
dynamic model. 

mv

 
Enforcing the least squares condition that the sum 
of the squares of the residuals, (multiplied by 
coefficients reflecting their precisions) be a 
minimum, gives rise to the set of recursive 
equations (the Kalman filter) that are applied as 
follows: 
 
With initial estimates of the state vector 1k−x  and 
the state cofactor matrix  a Kalman filter has 
the following five general steps 

1kx −
Q

 
(1) Compute the predicted state vector at  kt

1ˆk k−′ =x Tx  (2) 

(2) Compute the predicted state cofactor 
matrix at  kt

1k k

T
x x −
′ = +Q TQ T Qm  (3) 

(3) Compute the Kalman Gain matrix 

( ) 1

k k

T
x k k x k

−
′ ′= +K Q B Q B Q BT  (4) 

(4) Compute the filtered state vector by 
updating the predicted state with the 
measurements at  kt

( )ˆ k k k k k′ ′= + −x x K f B x  (5) 

(5) Compute the filtered state cofactor matrix 

( )
k kx k k x′= −Q I K B Q  (6) 

Go to step (1) and repeat the process for the next 
measurement epoch 1kt + . 
The "hat" symbol ( )^  above the vector x 
indicates that it is an estimate of the true (but 
unknown) state of the system derived from the 
Kalman filter.  This is also known as the filtered 
state.  The "prime" symbol ( )  indicates a 

predicted quantity.  The superscript (T), e.g.,  
denotes the matrix transpose where the rows of B 
become the columns of .  If B contains a single 
element, say 

'
TB

TB
[ ]x=B  then [ ]T x= =B B .  The 

superscript ( )1− , e.g.,  denotes the inverse of 
a matrix and matrix inversion is defined by 

1−A

1− =AA I , where I is the diagonal Identity matrix 
(ones on the leading-diagonal).  This relationship 
gives rise to matrix inversion routines that some 
computer languages offer as standard matrix 
functions. 
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It would be assumed that any computer 
implementation of a Kalman filter would use a 
language (C++, Visual Basic, etc.) that had some 
standard matrix routines attached that offered 
matrix transposition, multiplication and inversion.  
If a matrix has only a single element, say [ ]x=A  
then [ ]1 1 x− =A . 
 
Cofactor matrices, designated Q (often called 
covariance matrices) contain estimates of 
variances, denoted  and covariances, 
denoted  associated with random 
quantities A, B, C, etc.  The cofactor matrix of the 
measurements is denoted by Q, the cofactor 
matrix of the state vector is denoted by 

2 2 2, , ,  etcA B Cs s s
, , ,  etAB AC BCs s s c

xQ  and 
the cofactor matrix of the dynamic model 
residuals is denoted by .  It should be noted 
that the cofactor matrix  is derived in the 
following manner. 

mQ

mQ

 
The dynamic model in equation (1) 

  (7) 1k k−= +x Tx vm

is an estimation of the true (but unknown) changes 
in the elements of the state vector from time 1kt −  
to time  and as such we assume that there are 
corrections to these estimations that are contained 
in the vector , the dynamic model residuals; 
and the elements of  are assumed to be small, 
random and normally distributed with a mean of 
zero.  Also, we assume that the vector  is the 
product of two matrices, a coefficient matrix H 
and a vector w known as the system driving noise 

kt

mv

mv

mv

  (8) m =v Hw

The system driving noise w is a vector of random 
variables having variances and covariances 
contained in the cofactor matrix  and applying 
the general law of propagation of variances to 
equation (8) gives 

wQ

  (9) T
m w=Q HQ H

Determining T, H, w, and  will be 
discussed in the examples below. 

wQ mQ

 
The Kalman filter equations are relatively easy to 
implement on modern computers (a reason for its 
popularity) and the examples studied below are 
supplemented by MATLAB2 computer code 
available from the author. 
                                                      

k

2 MATLAB, a registered trademark of The 
MathWorks, Inc., is a high-performance language for 

DETERMINATION OF A DISTANCE BY AN EDM 
 
The EDM component of a Total Station measures 
distances by phase comparison of an emitted and 
reflected modulated light beam.  The 
measurement is an electro/optical process and the 
distance we see displayed after pressing the 
measure button on the Total Station is the 
"filtered" value of many hundreds of individual 
measurements, since a measurement takes only a 
number of milliseconds.  This value could be the 
result of a Kalman filter process. 
 
Consider the following sequence of measurements 
at times  etc, 1 2 3, , ,t t t …

355.416, 355.430, 355.412, 355.402, 355.419, … 

The variation in the measurements is assumed to 
be due to normally distributed random errors 
arising from the internal measurement process; 
often called the process noise.  [The measurement 
sequence above, was generated by adding 
normally distributed random errors with mean 
zero and standard deviation 0.010 m to a constant 
value of 355.420 m.] 
 
How will a Kalman filter produce the "filtered" 
value from this sequence? 
 
First, let us assume that the measurement model is  

 ˆ
k k+ =l v l  (10) 

kl  is the ( )1n×  vector of measurements,  is 
the 

kv

( )1n×  vector of residuals (small unknown 

corrections to the measurements) and  are 
estimates of the true (but unknown) value of the 
measurements.  n is the number of measurements 
at each epoch, that in this case is one.  The 
primary measurement model can be expressed in 
terms of the filtered state vector  at time  as 

ˆ
kl

ˆ kx kt

 ˆk k k k+ =v B x f  (11) 

In this case  contains the elements of , both 
vectors containing single quantities and 

ˆ kx ˆ
kl

k k= −f l  
also both containing single quantities (the 
measured distance at ).  The matrix B will 
contain a single quantity, . 

kt
[ ]1= −B

                                                                                  
technical computing.  It integrates computation, 
visualization, and programming in an easy-to-use 
environment where problems and solutions are 
expressed in familiar mathematical notation. 
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Secondly, the dynamic model linking the elements 
of the state vector at times 1kt −  and  is  kt

  (12) 1k k−= +x Tx v

(3) Compute the Kalman Gain matrix noting 
that ( )20.010⎡ ⎤= ⎣ ⎦Q  

 

( )
( ) [ ]

( ) [ ] ( ) [ ]( )
( ) ( )

2

12 2

2 2

1

2 2 2

12 2

0.010 1

0.010 1 0.010 1

0.010 2 0.010

0.500

T T
x x

−

−

−

−

× + −

′ ′= +

⎡ ⎤= ⎣ ⎦

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦
= −

K Q B Q B Q B

−  

m

The state vector contains a single element that 
should remain unchanged between  and  
(any change is simply due to measurement errors) 
then the transition matrix T will contain a single 
element  and there are no assumed 
corrections to this model; hence 

1kt − kt

[ ]1=T

m =v 0 , 
 and from equation (9) Q 0 . ,= =H 0 w 0 m =

  (4) Compute the filtered state vector  by 
updating the predicted state with the 
measurements at  

2x̂

2t

Lastly, an estimate of the cofactor matrix of the 
measurements Q and the elements of the state 
vector 

kxQ  must be made.  Let us assume (guess) 
that the measurements have a standard deviation 
of 10 mm (0.010 m) and hence their estimated 
variance is  and .  Since 

our primary measurement model has a state vector 
containing a single value (the measurement), then 

( 20.010) ⎤
⎦( )20.010⎡= ⎣Q

xQ  will only contain a single value, and we have 

as a starting estimate ( )
1

20.010x
⎡ ⎤= ⎣ ⎦Q , the same 

as Q. 

 

( )
[ ] [ ]{

[ ] [ ][( )}

2 2 2 2 2

355.416 0.500

355.430 1 355.416

ˆ

355.423

+ −

− − − ]

′ ′= + −

=

×

=

x x K f B x

 

 
(5) Compute the filtered state cofactor matrix at 

 2t

 

( )

[ ] [ ][ ]( ) ( )
2 22 2

21 0.500 1 0.010

0.000050

x x′= −

⎡ ⎤= − − − ⎣ ⎦
=

Q I K B Q

 
 
Now we can now start the Kalman filter at epoch 

 using the values at t  as filtered estimates. 2t 1

(1) Compute the predicted state vector at epoch 
 using the measurement 355.416 at  as 

the filtered estimate  
2t 1t

1x̂
Go to step (1) and repeat the process for the next 
measurement epoch . 3t
 

  [ ][ ]
2 1ˆ

1 355.416
355.416

′ =

=

=

x Tx The values from the Kalman filter for epochs 
 are 3 4 5,  and t t t

 
        epoch t        epoch  3 4t 

3

3

3

3

3

355.423000
0.000050

0.333333
ˆ 355.419333

0.000033

x

x

′ =
′ =

= −
=
=

x
Q

K
x

Q

…
…

…

  
4

4

4

4

4

355.419333
0.0000333

0.250000
ˆ 355.415000

0.000025

x

x

′ =
′ =

= −
=
=

x
Q

K
x

Q

…
…

(2) Compute the predicted state cofactor matrix 
at  using Q  as the filtered 

estimate  
2t ( )

1

20.010x
⎡= ⎣

⎤
⎦

  [ ] ( ) [ ]

( )

2 1

2

2

1 0.010 1 0

0.010

T
x x m′ = +

⎡ ⎤= +⎣ ⎦

=

Q TQ T Q

 
      epoch  5t

5

5

5

5

5

355.415000
0.000025

0.200000
ˆ 355.415800

0.000020

x

x

′ =
′ =

= −
=
=

x
Q

K
x

Q
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So, the sequence of measurements is 

355.416, 355.403, 355.421, 355.423, 355.408, … 

and the Kalman filter estimates  (the filtered 
values) are 

x̂

355.416, 355.423, 355.419, 355.415, 355.416, … 

 
Something that should be noted is that the filtered 
state cofactor matrix xQ  contains the estimate of 
the variance of the filtered value (variance is 
standard deviation squared).  We started with an 
estimated value  
and after five epochs the estimated value had 
reduced to  equivalent to an 
estimated standard deviation of 0.0045 m. 

( )
1

20.010 0.000100x = = =Q Q

5
0.000020x =Q

So the Kalman filter gives estimates with a better 
precision than the assumed precision of the 
measurement sequence; as we should expect from 
a least squares process.  A Kalman filter program 
edm.m, written in the MATLAB language and 
available from the author, processes 250 EDM 
measurements that are obtained by adding 
normally distributed random errors, with mean 
zero and standard deviation 0.010 m, to a constant 
value 355.420 m.  Figure 1 below shows two plots 
from this program (i) the filtered estimate of the 
distance (the filtered state) as a black solid line 
and the 250 measurements as black dots and (ii) a 
plot of the standard deviation of the filtered 
distance.  After processing the 250 measurements 
the filtered distance was  with a 
standard deviation of 0.000632 m. 

355.420 m

 
 

 

 
 

Figure 1.  MATLAB plots of filtered state (EDM distance) and standard deviation of filtered state. 
 
 
 

It is interesting to note that if all 250 
measurements 1 2 3 250, , , ,x x x x…  (each with 
standard deviation ) had been 

recorded and the mean 

0.010 mxs =

1 2 250

250
x x xx + + +

=
"  

computed, then propagation of variances gives the 

standard deviation of the mean as 

0.000632 m
250

x
x

ss = =  which is the same as 

the Kalman filter result. 

 5 



DETERMINATION OF POSITION AND VELOCITY OF A 
SHIP IN A NAVIGATION CHANNEL 
 
Figure 2 shows the path of a ship as it moves 
down a shipping channel at a constant heading 
and speed.  Navigation equipment on board 
automatically measures distances to transponders 
at three navigation beacons A, B and C at 60-
second intervals.  The measured distances are 
known to have a standard deviation of 1 metre and 
the solid line in Figure 2 represents solutions of 
the ship's position for each set of measurements at 
the 60-second time intervals.  The true path of the 
ship is shown as the dashed line.  The transponder 
measurements, from the ship to the navigation 
beacons A, B and C at 60-second time intervals 
are shown in Table 1 below.  The data were 
generated by assuming the starting coordinates of 
the ship were 7875.000 m East and 6319.392 m 
North and the ship was travelling at 15 knots on a 
heading of 064º (1 knot = 1 nautical mile per hour 
and 1 nautical mile = 1852 metres).  At 60-second 
intervals, the true ship position and distances to 
the beacons were computed.  These distances 
were then "disturbed" by the addition of normally 
distributed random errors (with zero mean and 
standard deviation 1 metre) and then rounded to 
the nearest 0.1 m. 
 

•
•

•

•

•

•
k

k-1

1
2

3

A

B

C

true
  pa

th

 
Figure 2.  Path of a ship in a navigation channel. 

(A, B and C are known navigation beacons) 
 

 
The coordinates of the three navigation beacons 
are: 

: 10000.000 E
10000.000 N

A  

 
: 13880.000 E

11250.000 N
B  

 
: 15550.000 E

7160.000 N
C  

 
 

Transponder measurements to 
navigation beacons Epoch 

A B C 

1 4249.7 7768.6 7721.1 

2 3876.1 7321.4 7288.5 

3 3518.4 6872.2 6857.6 

4 3193.3 6426.0 6429.1 

5 2903.6 5982.6 6009.7 

6 2664.0 5543.2 5596.6 

7 2490.9 5107.7 5191.5 

8 2392.9 4678.9 4797.1 

9 2383.2 4253.4 4417.8 

10 2463.0 3841.7 4050.9 

11 2623.2 3435.6 3709.9 

12 2849.0 3054.2 3395.8 

13 3126.7 2692.9 3119.4 

14 3446.9 2366.6 2891.1 

15 3793.4 2096.4 2724.4 

16 4166.0 1900.6 2630.9 

17 4552.2 1804.7 2610.2 

18 4956.2 1824.8 2677.4 

19 5366.4 1959.6 2819.7 

20 5785.0 2182.8 3023.5 

 
Table 1.  Transponder measurements at 60-second 

time intervals 
 
How will a Kalman filter produce an estimated 
position, speed and heading of the ship from the 
transponder measurements? 
 
Note that in our Kalman filter, the state vector will 
be , , ,

T

k k k k kE N E N⎡ ⎤= ⎣ ⎦x � �  containing 4n =  

elements (or parameters) where ( ),k kE N  are the 

ship's position and ( ),k kE N� �  the ship's velocity 

components.  The speed of the ship at time  is kt

 ( ) ( )2

k kspeed E N= +� � 2
 (13) 

and the heading of the ship (bearing from North) 
at time  is kt

 ( )tan k

k

Eheading
N

=
�
�  (14) 

 6 



The measurement model (primary model) 
 
Let us assume that the primary or measurement 
model is  

  (15) ˆ
k k+ =l v lk

)where  is the  vector of measurements 
(the transponder distances),  is the 

kl ( 1m×

kv ( )1m×  
vector of residuals (small unknown corrections to 
the measurements) and ˆ

kl re estimates of the true 
(but unknown) value of the measurements.  m is 
the number of measurements, that in this case is 
three at each measurement epoch.  The estimates 

 are non-linear functions of the coordinates E,N 
of the beacons A, B and C and the filtered state 
coordinates 

 a

k

ˆ
kl

ˆ ˆ,kE N  of the ship at time  kt

 
( )
( ) ( )2

ˆ ˆ ˆ ˆ, , ,

ˆ ˆ

j k k j j

k j k j

l l E N E N

E E N N

=

= − + −
2

 (16) 

for  , ,j A B C=

Expanding equation (16) into a series using 
Taylor's theorem gives 

( ) ( )
ˆ ˆˆ ˆ ˆ
ˆ ˆ

higher order terms

k k k k
k k

l ll l E E N N
E N
∂ ∂′ ′= + − + −
∂ ∂

+

′

k

 

where ,kE N′ ′

k

 are approximate coordinates of the 
ship at ,  is an approximate distance 
computed using 

kt l ′
,kE N′ ′  and the coordinates of the 

beacon, and the partial derivatives are 

for  , ,

ˆ
ˆ

ˆ
  ˆ

k j
j

jk

k j
j

jk

j A B C

E El d
lE

N Nl c
lN

=

′ −∂
= =

′∂

′ −∂
= =

′∂
 (17) 

Re-arranging equation (15) for a single distance 
gives 

  ˆv l l− = −

and substituting the Taylor series approximation 
for  (ignoring higher-order terms) and re-
arranging gives the linearized form of the primary 
measurement model as 

l̂

( )ˆ ˆ
j j k j k j j j k j kv d E c N l l d E c N′ ′− − = − + − − ′  (18) 

for  , ,j A B C=

This primary measurement model can be 
expressed in terms of the filtered state vector  
at time  in the matrix form as 

ˆ kx

kt

ˆ
0 0

ˆ
0 0
0 0

0 0
0 0
0 0

A A A

B B B

C C Ck k
k

A A A A

B B B B

C C C Ck k
k

E
v d c

Nv d c
Ev d c
N

E
l l d c

N
l l d c

E
l l d c

N

⎡ ⎤
− −⎡ ⎤ ⎡ ⎤ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢− − ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎢ ⎥⎣ ⎦
′⎡ ⎤′ − − −⎡ ⎤ ⎡ ⎤ ⎢ ⎥′⎢ ⎥ ⎢ ⎥ ⎢ ⎥′= − + − −⎢ ⎥ ⎢ ⎥ ′⎢ ⎥

′⎢ − ⎥ ⎢− − ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ′⎣ ⎦

�
�

�
�

 

or ˆk k k k k k k k′ ′+ = − + =v B x l l B x f  (19) 

Now in step (4) of the Kalman filter algorithm 
[see equation (5)], the filtered state vector  is 
obtained from 

ˆ kx

 ( )ˆ k k k k k′ ′= + −x x K f B x  (20) 

and substituting for  from equation (19) gives kf

 
( )
( )

ˆ k k k k k kk k k

k k k

′ ′ ′= + − + −

′ ′= + −

x x K l l B x B x

x K l l

′

 (21) 

Note: (i) the term ( )k k k′−f B x  in equation 
(20) is often called the predicted 
residuals  where, in our case k′v

 k k k k k k′ ′ ′= − = −v f B x l l  (22) 

 (ii) The term  in equation 
(21) is often called the corrections 
to the predicted state  where, in 
our case 

( k k′ −K l l )

∆x

 ( )k k k k′∆ = −x K l l  (23) 

 
The dynamic model (secondary model) 
 
A dynamic model that is extremely simple and 
often used in navigation problems can be 
developed by considering a continuous function of 
time, say ( )y y t= .  Following the development 
by Cross (1987), we can use Taylor's theorem to 
expand the function ( )y t  about the point kt t=  
into the series 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2

3

2!

3!

k
k k k

k
k

t t
y t y t t t y t y t

t t
y t

−
= + − +

−
+ +

� �

��� "

k�
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where ( ) ( ) ( ), , ,  ek k ky t y t y t� �� ��� tc  are derivatives of y 
with respect to t evaluated at .  Letting 

 and then  we may write 
kt t=

kt t t= + ∆ kt t t∆ = −

( ) ( ) ( )
( ) ( ) ( ) ( )2 3

2! 3!

k k k

k k

y t t y t y t t

y t y t
t t

+ ∆ = + ∆

+ ∆ + ∆ +

�

�� ���
"

 

 (24) 

We now have a power series expression for the 
continuous function ( )y t  at the point  
involving the function y and its derivatives 

, (all evaluated at ) and the time 
difference . 

kt t t= + ∆

, ,  etcy y� �� kt

kt t t∆ = −
 
In a similar manner, if we assume ( ) ( ), , ey t y t� �� tc  
to be continuous functions of t, then 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2

2!

etc

k
k k k

k k k

y t
y t t y t y t t t

y t t y t y t t

+ ∆ = + ∆ + ∆ +

+ ∆ = + ∆ +

���
� � �� "

�� �� ��� "
 

 (25) 

Now consider two time epochs  and kt 1kt −  
separated by a time interval , we can combine 
equations (24) and (25), with a change of 
subscripts for t, into the general matrix forms: 

t∆

 
(i) involving terms up to  y��

( ) [ ]
21

2
1

1

1
0 1 k

k k

y t y t y
y y t −

−

⎡ ⎤∆⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ∆= + ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ∆⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
��

� �
 (26) 

 
(ii) involving terms up to  y���

( ) ( )
( ) [ ]

3121 62
21

2 1

1

1
0 1
0 0 1

k

k k

ty t t y
y t y t
y y

y
t

−

−

⎡ ⎤∆⎡ ⎤∆ ∆⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ∆ + ∆⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ∆⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎣ ⎦

� �
�� ��

���  

 (27) 

In many navigation problems the continuous 
function of time ( )y y t=  is simply position, so 

( ) { }( ),y t E N t=  where E,N are east and north 
coordinates.  Here ( ) { }( )y t t=  means y is a 
function of time t where the function contains the 
variables within the braces { .  The derivatives 
are velocity: 

}

( ) { }( ),y t E N t= � �� , 

acceleration: ( ) { }( ),y t E N t= �� ����  and 

jerk: ( ) { }( ),y t E N t= ��� ������  which is the rate of change 

of acceleration.  In equations (26) and (27), we 
can consider the vector on the left-hand-side of 
the equals sign to be the vector , the state 
vector, or the state of the system at time .  The 
matrix on the right-hand-side is the transition 
matrix T and the elements of this matrix contain 
the links between the state vector at times  and 

kx

kt

kt

1kt − , i.e., 1k k−=x Tx .  The second term in the 
equations above is the product of two matrices 
and the result will be the vector of model residuals 

 (containing the same number of elements as 
the state vector).   is a reflection of the fact that 
the transition matrix does not fully describe the 
exact physical links between the states at times  
and 

mv

mv

kt

1kt −  and m =v Hw  where H is a coefficient 
matrix and w is the system driving noise.  In 
equations (26) and (27), the system driving noise 
is acceleration and jerk respectively. 
 
We can now use these general forms to define a 
suitable dynamic model. 
 
In our simple case (the ship in the channel) the 
state vector x contains four elements 

, , ,
T

k k k k kE N E N⎡ ⎤= ⎣ ⎦x � �  and the appropriate 

dynamic model in the form of equation (26) is 

 

( )
( )

1

21
2

21
2

1

1 0 0
0 1 0
0 0 1 0
0 0 0 1

0

0
0

0

k k

k

E t E
N t
E E
N N

t
Et
Nt

t

−

−

∆⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥∆⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤∆
⎢ ⎥

⎡ ⎤⎢ ⎥∆+ ⎢ ⎥⎢ ⎥∆ ⎣ ⎦⎢ ⎥
⎢ ⎥∆⎣ ⎦

� �
� �

��
��

N

m

 (28) 

or 1k k−= +x Tx v  (29) 

where T is the ( )n n×  transition matrix and  is 
the 

mv

( )1n×  vector of model residuals. 
 
If we expand equation (28) we see that it is really 
just the matrix form of the two equations of 
rectilinear motion; (i)  and (ii) v u at= +

21
2s ut at= + where s is distance, u is initial 

velocity, v is final velocity, a is acceleration and t 
is time. 

 8 



In our notation they are: 

(i) 1

1

k k

k k

E E E t

N N N
−

−

= + ∆

= +

� � ��
� � �� t∆

    and 

(ii) 
( )
( )

21
1 1 2

21
1 1 2

k k k

k k k

E E E t E t

N N N t N t
− −

− −

= + ∆ + ∆

= + ∆ + ∆

� ��

� ��
 

 

The dynamic model residuals  are m =v Hw

 

( )
( )

21
2

21
2

0

0
0

0

E

N

E

N

v t
v Et
v Nt
v t

⎡ ⎤∆⎡ ⎤
⎢ ⎥⎢ ⎥ ⎡ ⎤⎢ ∆⎢ ⎥ = ⎢ ⎥⎢⎢ ⎥ ∆ ⎣ ⎦⎢ ⎥⎢ ⎥
⎢ ⎥∆⎣ ⎦ ⎣ ⎦

�

�

��
��

⎥
⎥  (30) 

where the coefficient matrix H and the system 
driving noise w are  

( )
( )

21
2

21
2

0

0   and  
0

0

t
Et
Nt

t

⎡ ⎤∆
⎢ ⎥

⎡ ⎤⎢ ⎥∆= = ⎢ ⎥⎢ ⎥∆ ⎣ ⎦⎢ ⎥
⎢ ⎥∆⎣ ⎦

H
��
��w  (31) 

In this simple navigation problem it is assumed 
that the system driving noise w contains small 
random accelerations caused by the sea and wind 
conditions, the steering of the ship, the engine 
speed variation, etc. 
 
The cofactor matrix of the dynamic model  is 
given by 

mQ

  (32) T
m w=Q HQ H

where , the cofactor matrix of the system 
driving noise, is 

wQ

 
2

2

0
0
E

w
N

s
s

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

Q ��

��
 

and 2 2,E Ns s�� ��  are the estimates of the variances of 
the accelerations in the east and north directions 
and the covariance is assumed to be zero.  Using 
the coefficient matrix H in equation (31) we have 

( )
( )

( )
( )

21
2

221
2

2

21
2

21
2

0
00

00
0

0 0

0 0

E
m

N

t
st

st
t

t t

t t

⎡ ⎤∆
⎢ ⎥

⎡ ⎤⎢ ⎥∆= ⎢ ⎥⎢ ⎥∆ ⎣ ⎦⎢ ⎥
⎢ ⎥∆⎣ ⎦
⎡ ⎤∆ ∆
⎢
⎢ ⎥∆ ∆⎣ ⎦

×

Q ��

��

⎥  (33) 

Now we can start the Kalman filter, but first some 
initial values must be set.  These initialisation 
steps will be designated as (a), (b), (c) etc 
followed by the Kalman filter steps (1), (2), (3) 
etc. 
 
(a) Set the elements of the transition matrix 

 

1 0 0
0 1 0
0 0 1 0
0 0 0 1

t
t

∆⎡ ⎤
⎢ ⎥∆⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

T  

 In this exercise 60sect∆ =  
 
(b) Set the cofactor matrix of the measurements 

 

2

2

2

0 0
0 0
0 0

A

B

C

l

l

l

s
s

s

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Q  

 In this case  2 2 2 1.0 m
A B Cl l ls s s= = = 2

 
(c) Set the cofactor matrix of the system driving 

noise 

 
2

2

0
0
E

w
N

s
s

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

Q ��

��
 

 In this case 2 2 20.017 m sE Ns s= =�� ��
4  

 
(d) Set the coefficient matrix of the system 

driving noise 

( )
( )

21
2

21
2

0

0
0

0

t

t
t

t

⎡ ⎤∆
⎢ ⎥
⎢ ⎥∆= ⎢ ⎥∆⎢ ⎥
⎢ ⎥∆⎣ ⎦

H  

 
(e) Compute the cofactor matrix of the dynamic 

model 

  T
m w=Q HQ H

 
(f) Set the starting estimates of the state vector.  

This will be the filtered state vector for 
epoch  2t

 1

1

7875.000 m
6319.392 m

7 m
3 m s

E
N
E s
N

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

x �
�
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(3) Compute the Kalman Gain matrix (g) Set the starting estimates of the state 
cofactor matrix.  This will be the filtered 
state cofactor matrix for epoch  2t  ( )2 2

1

2 2 2
T T

x x

−
′ ′= +K Q B Q B Q B  

 Using Q from step (b) and B whose elements 
have been determined using equations (17).  
The form of B is given in equation (19).  

2

2

2

2

0 0 0
0 0
0 0 0
0 0 0

k

E

N
x

E

N

s
s

s
0

s

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Q
�

�

 
 
(4.1) Compute the numeric terms "computed – 

observed" distances [see equation (21)] 
  In this case  and 2 2 20mE Ns s= = 2

2 2 20.5 m sE Ns s= =� �
2  (4.2) Compute the filtered state vector x  by 

updating the predicted state 
2ˆ

  [see equation (21)] Now start the Kalman filter at epoch t  2

 ( )ˆ k k k k′ ′= + −x x K l l   
(1) Compute the predicted state vector at epoch 

 using the filtered estimate  2t 1x̂  
(5) Compute the filtered state cofactor matrix at 

 2t  2 1ˆ′ =x Tx

 ( )
2 22 2x x′= −Q I K B Q   

(2) Compute the predicted state cofactor matrix 
at  using Q  from step (e) 2t m

 
Go to step (1) and repeat the process for the next 
measurement epoch . 3t 

2 1

T
x x m′ = +Q TQ T Q  

 
 

 
The following output from a MATLAB program kalship3.m (available from the author) processes the data in 
Table 1 in a Kalman filter beginning at epoch 2. 
 
epoch =   2 
Filtered State  Corrns        Filtered State cofactor matrix Qxx 
   8289.594     -5.406        1.009225 -0.797965  0.033097 -0.026169 
   6521.882     22.490       -0.797965  1.439797 -0.026169  0.047217 
      6.823     -0.177        0.033097 -0.026169  0.506780 -0.000858 
      3.738      0.738       -0.026169  0.047217 -0.000858  0.507243 
 
epoch =   3 
Filtered State  Corrns        Filtered State cofactor matrix Qxx 
   8705.780      6.823        0.926924 -0.643621  0.030398 -0.021105 
   6727.944    -18.189       -0.643621  1.218371 -0.021105  0.039955 
      7.046      0.224        0.030398 -0.021105  0.494715 -0.004015 
      3.141     -0.596       -0.021105  0.039955 -0.004015  0.496822 
 
: 
: 
 
epoch =  19 
Filtered State  Corrns        Filtered State cofactor matrix Qxx 
  15366.544    -11.869        0.732074  0.288579  0.024112  0.009501 
   9973.570     -6.708        0.288579  0.820826  0.009502  0.027033 
      6.743     -0.391        0.024112  0.009502  0.364017  0.005200 
      3.276     -0.221        0.009501  0.027033  0.005200  0.366470 
 
epoch =  20 
Filtered State  Corrns        Filtered State cofactor matrix Qxx 
  15781.273     10.148        0.598119  0.158080  0.019704  0.005204 
  10175.278      5.167        0.158080  0.847313  0.005203  0.027911 
      7.077      0.334        0.019704  0.005203  0.358551  0.006055 
      3.446      0.170        0.005204  0.027911  0.006055  0.361445 
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Filtered Values 
Epoch Distance    Speed   Heading 
      (metres)    (m/s)  (degrees) 
 1       0.000    7.616   66.801 
 2     461.400    7.779   61.286 
 3     925.806    7.715   65.975 
 4    1390.357    7.775   62.905 
 5    1853.155    7.656   64.729 
 6    2315.773    7.765   63.208 
 7    2778.387    7.660   65.206 
 8    3240.322    7.741   62.817 
 9    3703.373    7.698   64.889 
10    4165.683    7.713   63.805 
11    4631.259    7.805   63.717 
12    5091.795    7.550   64.711 
13    5555.396    7.900   63.076 
14    6020.782    7.618   64.761 
15    6481.164    7.728   63.223 
16    6945.300    7.744   64.584 
17    7405.657    7.603   63.888 
18    7872.215    7.945   63.889 
19    8335.291    7.497   64.090 
20    8796.471    7.872   64.039 
 
 
The speed and heading of the ship at each epoch 
have been computed using equations (13) and (14) 
respectively.  If the first two epochs are ignored, 
on the assumption that the starting values are not 
very close to the truth and the filter needs some 
time to "stabilise", then the average of the 
remaining values are 7.72 m/s and 64.08° 
respectively with ranges 0.4 m/s (epochs 18 and 
19) and 3.1° (epochs 3 and 4).  Bearing in mind 
that the data were generated for a ship travelling 
at 15 knots (equivalent to 7.72 m/s) on a heading 
of 064°, these are very close estimates of the 
"true" values.  Also, the "true" position of the ship 
at the 20th epoch (using the initial coordinates and 
15 knots on a heading of 064°) is 15781.691 E 
and 10175.743 N.  The Kalman filter gives the 
ship's position as 15781.273 E and 10175.278 N 
(see the filtered state for epoch 20 in MATLAB 
output above), which is within 0.418 m and 0.465 
m respectively of its "true" location.   
 
The output from the MATLAB program also 
gives the cofactor matrix of the filtered state, i.e., 
the estimates of variances and covariances of the 
four elements of the state vector.  The initial 
estimates for epoch  (see step (g) above) were 

 and 
1t

2 2 20mE Ns s= = 2 2 2 20.5 m sE Ns s= =� �
2  giving 

  
1

20 0 0 0
0 20 0 0
0 0 0.5 0
0 0 0 0.5

x

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

Q

 
and for epoch  (after one pass through the filter) 2t

 

2

1.009225 0.797965 0.033097 0.026169

0.797965 1.439797 0.026169 0.047217

0.033097 0.026169 0.506780 0.000858

0.026169 0.047217 0.000858 0.507243

x

− −

− −

− −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

Q  

and finally for epoch  20t
 

20

0.598119 0.158080 0.019704 0.005204

0.158080 0.847313 0.005203 0.027911

0.019704 0.005203 0.358551 0.006055

0.005204 0.027911 0.006055 0.361445

x

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

Q  

 
Here the variance estimates are , 

 and 

2 20.598119 mEs =
2 20.847313mNs = 2 20.358551 m sEs =�

2 , 
2 0.361445 m sNs =�

2 2 .  These equate to standard 
deviations in position of 0.78 m E and 0.92 m N 
and standard deviations in velocity of 0.60 m/s E 
and 0.60 m/s N.  Using equation (13) and the law 
of propagation of variances gives the estimated 
standard deviation of the ship's speed as 0.60 m/s. 
 
We can see from this very limited analysis that the 
Kalman filter gives quite reasonable estimates of 
the position and velocity of the ship from a 
sequence of noisy distance measurements.  This is 
a feature of a Kalman filter: you obtain 
information about the dynamics of your 
measurement platform. 
 
 
CONCLUSION 
 
Kalman filtering is an extension of the least 
squares technique as formulated by C.F. Gauss.  
Indeed, Krakiwsky (1975) shows that the Kalman 
filter equations can be derived from the basic least 
squares principle (minimizing sums of weighted 
squares of measurement and model residuals) 
used in deriving conventional methods of least 
squares adjustment of survey data.  In this paper 
we have stated the filter equations and the primary 
and dynamic models upon which they are based 
and then used two examples to demonstrate their 
use.  The first example, the determination of a 
distance by an EDM, is an attempt to show how a 
Kalman filter could be used to obtain a single 
estimate from a continuous sequence of 
measurements.  In this case the system (the EDM) 
is in fact static but appears to be moving due to 
measurement errors.   
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The Kalman filter processes the data sequence 
providing a "best estimate" at each measurement 
epoch based on all the previous measurements and 
their measurement precisions.  The second 
example is a more conventional navigation 
problem: and one that has been used in a number 
of texts (e.g., Cross 1992) to demonstrate the 
usefulness of the Kalman filter.  In this example 
the measurements are non-linear functions of the 
elements of the state vector and we have shown 
how a linearized primary measurement model is 
obtained and used.  We have also shown, by 
assuming that position is a continuous function of 
time, how the members of the dynamic model are 
obtained – the transition matrix T, the coefficient 
matrix H and the system driving noise w where 
the dynamic model corrections are m =v Hw .  
The assumption that position is a continuous 
function of time may not be correct in all 
navigation problems, but is adequate in our 
example. 
 
In both of our examples, data have been generated 
to simulate actual measurements affected by 
random errors.  These simulated measurements 
have normally distributed random errors and the 
measurements are independent, i.e., there is no 
correlation3 between measurements at different 
epochs.  This may not reflect actual measurements 
obtained from real situations, where there could 
be some unaccounted-for systematic errors and/or 
possibly unknown correlations between 
measurements.  In such cases, careful analysis of 
residuals and data may be required to identify 
systematic errors (or deficiencies in the models) 
and correlated data; with a possible need to 
modify the Kalman filter equations to allow for 
correlation.  Bearing in mind this assumption, our 
examples demonstrate how closely the Kalman 
filter estimates approach the "true" values, even 
with a limited amount of data (the second 
example) and quite noisy measurements.   
 
 
 
 

                                                      
3 Correlation is a statistical measure of the linear 
independence of measurements.  If two measurements 
are independent then their correlation will be zero.  
Correlated measurements require special treatment in 
any least squares process. 
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